2022 CONSUMER CONFIDENCE REPORT (CCR) Windfern Forest UD

(PWS ID: TX1010924)

Annual Water Quality Report for the period of January 1 to December 31, 2022

THIS REPORT IS INTENDED TO PROVIDE YOU WITH IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER AND THE EFFORTS

MADE BY THE WATER SYSTEM TO PROVIDE SAFE DRINKING WATER.

Issued June 2023

Is my water safe?

In order to ensure that tap water is safe to drink, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in sources include:

- -Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- -Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- -Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, can also come from gas stations, urban storm water runoff, and septic systems.
- -Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Special Notice

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids and people with HIV/AIDs or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800)426-4791.

ALL drinking water may contain contaminants

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Information about Unregulated Contaminants

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

En Español

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (281)807-9500.

Where do we get our drinking water?

The source of drinking water used by Windfern Forest Utility District is both ground water and surface water. Our water comes from the Chicot and Evangeline Aquifers and also the Trinity River in Harris County. The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system, contact TOPS. The complete source water assessment can be found at http://dww.tceq.texas.gov/DWW/.

Windfern Forest was on interconnect with the City of Houston to supplement the drinking water supply for all of 2022. Attached you will find a table of the regulated contaminants that were detected in 2022 from the City of Houston.

PUBLIC PARTICIPATION OPPORTUNITIES

DATE: BOARD OF DIRECTORS GENERALLY

MEET ON THE THIRD TUESDAY

OF EACH MONTH.

TIME: 4:00 P.M.

LOCATION: 14410 MAUNA LOA LN. HOUSTON, TX

77040

PHONE: 281-807-9500

To learn about future public meetings (concerning your drinking water), or to request one be scheduled, please call us or email us at customerservice@topswater.com.

SAVE WATER SAVE THE EARTH The State of Texas monitors for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Regulated Contaminants

Disinfectants and Disinfection By- Products	Collection Date	Your Water	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2022	31	1.4 - 31.2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2022	33	2.9 - 33	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2022	0.235	0.0837 - 0.235	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Cyanide	2020	120	0 - 120	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride	2020	0.91	0.26 - 0.91	4	4	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2022	0.32	0.308 - 0.32	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Selenium	2022	3.6	0 - 3.6	50	50	ppb	N	Discharge from petroleum and metal refineries: Erosion of natural deposits; Discharge from mines.
Synthetic Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Simazine	2022	0.08	0.08 - 0.08	4	4	ppb	N	Herbicide runoff
Atrazine	2022	0.13	0.13 - 0.13	3	3	ppb	N	Runoff from herbicide used on row crops.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	2019	1.61	1.61 - 1.61	0	5	pCi/L	N	Erosion of natural deposits.

Maximum Residual Disinfectant Level

Year	Disinfectant	Minimum Level	Average Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Source of Chemical
2022	Chloramine	0.63	2.5	4.0	4.0	< 4.0	ppm	Disinfectant added to control microbes

LEAD AND COPPER

IF PRESENT, ELEVATED LEVELS OF LEAD CAN CAUSE SERIOUS HEALTH PROBLEMS, ESPECIALLY FOR PREGNANT WOMEN AND YOUNG CHILDREN. LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND COMPONENTS ASSOCIATED WITH SERVICE LINES AND HOME PLUMBING. WINDEFERN FOREST UD IS RESPONSIBLE FOR PROVIDING HIGH QUALITY DRINKING WATER, BUT CANNOT CONTROL THE VARIETY OF MATERIALS USED IN PLUMBING COMPONENTS. WHEN YOUR WATER HAS BEEN SITTING FOR SEVERAL HOURS, YOU CAN MINIMIZE THE POTENTIAL FOR LEAD EXPOSURE BY FLUSHING YOUR TAP FOR 30 SECONDS TO 2 MINUTES BEFORE USING WATER FOR DRINKING OR COOKING. IF YOU ARE CONCERNED ABOUT LEAD IN YOUR WATER, YOU MAY WISH TO HAVE YOUR WATER TESTED. INFORMATION ON LEAD IN DRINKING WATER, TESTING METHODS, AND STEPS YOU CAN TAKE TO MINIMIZE EXPOSURE IS AVAILABLE FROM THE SAFE DRINKING WATER HOTLING OR AT HTTP://www.epa.gov/safewater/lead.

Lead/ Copper	Year	MCLG	Action Level	The 90 th Percentile	# of Sites Over AL	Units	Was This a Violation	Likely Source of Contaminant
Copper	2021	1.3	1.3	0.144	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

LEAD AND COPPER RULE PROTECTS PUBLIC HEALTH BY MINIMIZING LEAD AND COPPER LEVELS IN DRINKING WATER, PRIMARILY BY REDUCING WATER CORROSIVITY. LEAD AND COPPER ENTER DRINKING WATER MAINLY FROM CORROSION OF LEAD AND COPPER IN PLUMBING MATERIALS.

TOTAL COLIFORM- NONE DETECTED
FECAL COLIFORM-NONE DETECTED
TURBIDITY — NOT REQUIRED

ORGANIC CONTAMINANTS — NOT TESTED FOR OR NOT DETECTED

UNREGULATED CONTAMINANTS — NOT TESTED FOR OR NOT DETECTED

E.COLI — NONE DETECTED

Unregulated Contaminants

Unregulated Contaminants	Collection Date	Your Water	Lowest Level Detected	Highest Level Detected	Units
Bromoform	2022	5.1	1.1	13	ppb
Chloroform	2022	13.9	12	15.8	ppb
Bromodichloromethane	2022	8.27	6.4	11.3	ppb
Dibromochloromethane	2022	6.23	1.7	15	ppb

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Abbreviations and Definitions

PPQ - parts per quadrillion, or picograms per liter

NTU - Nephelometric Turbidity Units

MFL - million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of radioactivity)

PPM - parts per million, or milligrams per liter (mg/L) **PPB** - parts per billion, or micrograms per liter (ug/L)

PPB - parts per billion, or micrograms per liter (t

PPT - parts per trillion, or nanograms per liter

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Maximum Residual Disinfectant level (MRDL) – The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant in necessary for control of microbial contaminants.

Maximum Contaminant Level (MCL) – The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Treatment Technique – A required process intended to reduce the level of a contaminant in drinking water.

Action Level – The concentration of a contaminant, which if exceeded triggers treatment or other requirements, which a water system must follow.

Action Level Goal (ALG)- The level of contaminant in drinking water below which there is not known or expected risk to health. ALGs allow for a margin of safety.

MREM/year- millirems per year (a measure of radiation absorbed by the body)

NA - not applicable

Maximum Residual Disinfectant level (MRDL) – The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Level 1 Assessment - A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment - A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

If a water system has performed additional monitoring which indicates the presence of other contaminants in the finished water, TCEQ recommends that systems find out if EPA has proposed a National Primary Drinking Water Regulation or issued a health advisory for that contaminant by calling the Safe Drinking Water Hotline (800-426-4791). TCEQ considers detects above a proposed MCL or health advisory level to indicate possible health concerns. To learn more about your water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

City of Houston Regulated Contaminants

NEWPP (EP141)

Monitored at Water Plants

- IVIOIIIIOI CU UL VVULCI I IUIIIO						
CONTAMINANT	MCL	MCLG	EP141	MIN	AVG	MAX
ATRAZINE (UG/L)	3	3	1.7	1.7	1.7	1.7
BARIUM (MG/L)	2	2	0.0676	0.0676	0.0676	0.0676
CYANIDE (MG/L)	0.2	0.2	0.04	0.04	0.04	0.04
FLUORIDE (MG/L)	4	4	0.1	0.1	0.1	0.1
NITRATE (MG/L)	10	10	0.43	0.43	0.43	0.43
SIMAZINE (UG/L)	4	4	0.11	0.11	0.11	0.11

Secondary Standards

CONTAMINANT	SCL	EP141	MIN	AVG	MAX
CHLORIDE (MG/L)	250	37	37	37	37
MANGANESE (MG/L)	0.05	0.0029	0.0029	0.0029	0.0029
PH (SU)	8.5	8.8	8.8	8.8	8.8
SULFATE (MG/L)	250	12	12	12	12
TDS (MG/L)	500	157	157	157	157

NEWPP

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 100% Yearly Maximum [NTU]: 0.15

Dec-22

	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	# of Monthly Turbidity Samples	186	168	186	180	186	180	186	186	180	186	180	186
Ī	# of samples above												
	0.3 NTU	0	0	0	0	0	0	0	0	0	0	0	0
	Average Turbidity [NTU]	0.03	0.03	0.05	0.05	0.06	0.06	0.08	0.08	0.08	0.07	0.07	0.06
	Max Turbidity Reading [NTU]	0.05	0.04	0.10	0.11	0.09	0.10	0.11	0.11	0.13	0.10	0.11	0.15
	% ≤ 0.3 NTU	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Acres Homes (EP003), Jersey Village (EP054)*, EWPP3 (EP101), & NEWPP (EP141)

Monitored at Water Plants

CONTAMINANT	MCL	MCLG	EP003	EP101	EP141	MIN	AVG	MAX
ARSENIC (MG/L)	0.01	0	ND	0.0027	ND	ND	0.0009	0.0027
ATRAZINE (UG/L)	3	3	0.27	0.2	1.7	0.2	0.7233	1.7
BARIUM (MG/L)	2	2	0.0536	0.0628	0.0676	0.0536	0.0613	0.0676
CYANIDE (MG/L)	0.2	0.2	0.02	ND	0.04	ND	0.02	0.04
FLUORIDE (MG/L)	4	4	0.21	0.3	0.1	0.1	0.2033	0.3
NITRATE (MG/L)	10	10	0.22	0.23	0.43	0.22	0.2933	0.43
SIMAZINE (UG/L)	4	4	ND	0.09	0.11	ND	0.0667	0.11

Secondary Standards

occomulary ocumular							
CONTAMINANT	SCL	EP003 EP101		EP141	MIN	AVG	МАХ
ALUMINUM (MG/L)	0.2	0.0651	0.11	ND	ND	0.0584	0.11
CHLORIDE (MG/L)	250	42	51	37	37	43.3333	51
IRON (MG/L)	0.3	0.19	ND	ND	ND	0.0633	0.19
MANGANESE (MG/L)	0.05	0.0071	0.0044	0.0029	0.0029	0.0048	0.0071
PH (SU)	8.5	7.6	7.9	8.8	7.6	8.1	8.8
SULFATE (MG/L)	250	32	42	12	12	28.6667	42
TDS (MG/L)	500	250	284	157	157	230.3333	284
TEXAS COPPER							
(MG/L)	1	0.0033	ND	ND	ND	0.0011	0.0033
ZINC (MG/L)	5	0.0073	ND	ND	ND	0.0024	0.0073

EWPP1&2 (EP001), SEWPP (EP002), & Sims Bayou (EP078)

Monitored at Water Plants

widilitarea at wate	i riaiits							
CONTAMINANT	MCL	MCLG	EP001	EP002	EP078	MIN	AVG	MAX
ARSENIC (MG/L)	0.01	0	ND	ND	0.0024	ND	0.0008	0.0024
ATRAZINE (UG/L)	3	3	0.2	0.23	ND	ND	0.1433	0.23
BARIUM (MG/L)	2	2	0.0493	0.0438	0.123	0.0438	0.072	0.123
CYANIDE (MG/L)	0.2	0.2	0.04	ND	ND	ND	0.0133	0.04
FLUORIDE (MG/L)	4	4	0.31	0.24	0.4	0.24	0.3167	0.4
NITRATE (MG/L)	10	10	0.27	0.11	0.14	0.11	0.1733	0.27
SIMAZINE (UG/L)	4	4	0.09	ND	ND	ND	0.03	0.09

Secondary Standards

CONTAMINANT	SCL	EP001	EP002	EP078	MIN	AVG	MAX
CHLORIDE (MG/L)	250	49	37	45	37	43.6667	49
MANGANESE (MG/L)	0.05	0.0024	ND	0.0039	ND	0.0021	0.0039
PH (SU)	8.5	8	8.1	7.5	7.5	7.8667	8.1
SULFATE (MG/L)	250	56	42	31	31	43	56
TDS (MG/L)	500	302	246	309	246	285.667	309
TEXAS COPPER (MG/L)	1	0.0029	0.0629	ND	ND	0.0219	0.0629

EWPP1 & SEWPP

Combined

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 99.40%

Yearly Maximum [NTU]: 0.51

Sep-22

EWPP1

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 100% Yearly Maximum [NTU]: 0.34

Mar-22

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
# of Monthly Turbidity Samples	186	168	186	180	186	180	186	186	180	186	180	186
# of samples above 0.3 NTU	0	0	0	0	0	0	0	0	0	0	0	0
Average Turbidity [NTU]	0.13	0.14	0.14	0.12	0.12	0.12	0.12	0.12	0.1	0.14	0.14	0.14
Max Turbidity Reading [NTU]	0.28	0.25	0.34	0.22	0.31	0.26	0.28	0.29	0.19	0.27	0.22	0.32
% ≤ 0.3 NTU	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

SEWPP

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 100%

Yearly Maximum [NTU]: 0.10

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
# of Monthly Turbidity Samples	186	168	186	180	185	180	186	186	180	186	180	186
Samples	100	108	100	100	103	100	100	100	100	100	100	100
# of samples above 0.3 NTU	0	0	0	0	0	0	0	0	0	0	0	0
Average Turbidity [NTU]	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.03	0.03
Max Turbidity Reading [NTU]	0.09	0.07	0.07	0.07	0.10	0.07	0.10	0.10	0.07	0.10	0.07	0.10
% ≤ 0.3 NTU	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

EWPP3 & NEWPP Combined

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 99.40%

Yearly Maximum [NTU]: 0.51

Sep-22

EWPP3

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 99.40% Yearly Maximum [NTU]: 0.51

Sep-22

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
# of Monthly Turbidity												
Samples	186	168	186	180	186	180	186	186	180	186	180	186
# of samples above 0.3 NTU	0	1	0	0	0	0	0	1	1	0	0	1
Average Turbidity [NTU]	0.18	0.13	0.14	0.13	0.11	0.13	0.11	0.1	0.13	0.13	0.15	0.13
Max Turbidity Reading												
[NTU]	0.32	0.46	0.27	0.27	0.27	0.28	0.28	0.38	0.51	0.32	0.34	0.42
% ≤ 0.3 NTU	100%	99%	100%	100%	100%	100%	100%	100%	99%	100%	100%	100%

NEWPP

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 100% Yearly Maximum [NTU]: 0.15

Dec-22

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
# of Monthly Turbidity												
Samples	186	168	186	180	186	180	186	186	180	186	180	186
# of samples above 0.3 NTU	0	0	0	0	0	0	0	0	0	0	0	0
Average Turbidity [NTU]	0.03	0.03	0.05	0.05	0.06	0.06	0.08	0.08	0.08	0.07	0.07	0.06
Max Turbidity Reading												
[NTU]	0.05	0.04	0.10	0.11	0.09	0.10	0.11	0.11	0.13	0.10	0.11	0.15
% ≤ 0.3 NTU	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Katy Addicks (EP055), Spring Branch (EP082), & EWPP3 (EP101)

Monitored at Water Plants

CONTAMINANT	MCL	MCLG	EP055		EP08	32		EP101	MIN	AVG	MAX
CONTAIVIINANT	IVICE	IVICEG	EPUSS	1	2	3	4	EPIUI	IVIIIV	AVG	IVIAA
ARSENIC (MG/L)	0.01	0	N/A	ND	0.0034	0.0048	ND	0.0027	ND	0.0022	0.0048
ATRAZINE (UG/L)	3	3	ND	0.21	N/A	N/A	N/A	0.2	ND	0.1367	0.21
BARIUM (MG/L)	2	2	N/A	0.0508	N/A	N/A	N/A	0.0628	0.0508	0.0568	0.0628
CYANIDE (MG/L)	0.2	0.2	N/A	0.12	N/A	N/A	N/A	ND	ND	0.06	0.12
FLUORIDE (MG/L)	4	4	N/A	0.23	N/A	N/A	N/A	0.3	0.23	0.265	0.3
NITRATE (MG/L)	10	10	ND	0.18	N/A	N/A	N/A	0.23	ND	0.1367	0.23
SIMAZINE (UG/L)	4	4	ND	ND	N/A	N/A	N/A	0.09	ND	0.03	0.09

Secondary Standards

-							
CONTAMINANT	SCL	EP055	EP082	EP101	MIN	AVG	МАХ
ALUMINUM (MG/L)	0.2	N/A	0.0345	0.11	0.0345	0.0722	0.11
CHLORIDE (MG/L)	250	N/A	41	51	41	46	51
FLUORIDE (MG/L)	2	N/A	0.23	0.3	0.23	0.265	0.3
MANGANESE (MG/L)	0.05	N/A	0.007	0.0044	0.0044	0.0057	0.007
PH (SU)	8.5	N/A	7.6	7.9	7.6	7.75	7.9
SULFATE (MG/L)	250	N/A	37	42	37	39.5	42
TDS (MG/L)	500	N/A	261	284	261	272.5	284

EWPP3

Lowest Monthly Percentage of Samples ≤ 0.3 NTU: 99.40% Yearly Maximum [NTU]: 0.51

Sep-22

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
# of Monthly Turbidity Samples	186	168	186	180	186	180	186	186	180	186	180	186
# of samples above 0.3 NTU	0	1	0	0	0	0	0	1	1	0	0	1
Average Turbidity [NTU]	0.18	0.13	0.14	0.13	0.11	0.13	0.11	0.1	0.13	0.13	0.15	0.13
Max Turbidity Reading [NTU]	0.32	0.46	0.27	0.27	0.27	0.28	0.28	0.38	0.51	0.32	0.34	0.42
% ≤ 0.3 NTU	100%	99%	100%	100%	100%	100%	100%	100%	99%	100%	100%	100%

